进入国家奥数集训队的数学才子教AMC 10/12 class,位置有限,请抓紧时间报名

AMC10 数学竞赛培训班招生

       AMC是American Mathematics Competition是美国数学竞赛的缩写,是一系列面向初高中学生的,由简至难的数学比赛,包括AMC8,AMC10/12, AIME(美国数学邀请赛)和USA(J)MO(美国数学奥林匹克赛和美国少年数学奥林匹克赛)。

这一系列竞赛旨在给所有喜爱数学的学生们提供超出学校数学教育之外的挑战,帮助这些孩子培养独立分析问题和解决问题的能力。 高中数学竞赛10年级组(AMC10)由25道选择题组成, 是为10年级以下高中学生和爱好数学的中学生开设的数学竞赛。

举凡 AMC10表现优异的学生可以获得晋级全美数学邀请赛(AIME)的资格。另外,有一份出色的AMC比赛成绩也会帮助学生在大学申请,更可能在名牌大学的申请中脱颖而出。

The American Mathematics Competitions (AMC) consist of a series of increasingly difficult tests for gr 6-12. Students who have passed AMC 10 or AMC 12 are invited to take AIME. An AIME qualifier is more impressive than an 800 on a SAT Math. There were some advanced students began to take AMC once or twice each year since their 7th grade. They got big improvement each year & successfully became an AIME qualifier within 2 to 5 years. Good AMC scores will enhance admission opportunities for students to elite colleges. Its mission is to help students increase interest in math and to develop critical thinking & problem-solving skills in Math.

Time:9/5 to 11/21, 2:00 to 4:00pm,Saturday, (We can adjust the schedule by request)
Address: 1340 S De Anza Blvd. Suite 204, San Jose, CA 95129
Contact: 408-366-2204, spring.light.edu@gmail.com
Registration: https://goo.gl/7937vA
Fee: $600(12 sessions)

Instructor: Nelson Niu

MOSP Qualifier, ’15

50 top students from USA are invited to Math Olympiad Summer Program (MOSP)

USAMO Qualifier, ’15

USA(J)MO Qualifier, ’14

AIME Qualifier, ’12-’15

Students should be comfortable with regular school math up to and including Algebra I and Geometry. No previous contest experience is necessary.

Solving Problems Video

在当今科技高度发达的社会,新一代的年轻人成功的要素不再是记忆更多的知识和资讯,因为你永远不可能在这个方面超越电脑—-而是拥有电脑不具备的能力—-独立分析问题解决问题的能力,尤其是能够解决那些各种前所未遇的崭新问题的能力。
那么如何培养孩子的这方面的能力呢?通过解数学题来训练学生是个非常有效的方法。然而,在美国的基础数学教育中非常缺乏这方面的培养。那么如何帮助孩子通过数学学习来训练分析问题、解决问题的能力呢?
在影片中,本地高中生,入围2015年全美数学奥林匹克夏季集训营,USAMO2015, USAJMO2014和USACO金奖的Nelson Niu将从独特的视角来阐述他对这个问题的见解。

    In today’s technology-oriented society, those among today’s generation of youth who will succeed will not be the ones who can retain the most information, but the ones who can do what computers cannot — solve problems they have never seen before. Learning how to do this requires practice, and there is no better way to get this practice than by solving challenging math problems.

    Today’s American education system fails to understand that this is the whole point of teaching math, so it does not engage and challenge students enough at all. How, then, can students develop a strong problem solving background? Nelson Niu explores the answer to this question from a fresh perspective.
    
Share the joy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

发表评论